Particle-Based Stochastic Simulation in Systems Biology
نویسندگان
چکیده
Computational modeling and simulation have become invaluable tools for the biological sciences. Both aid in the formulation of new hypothesis and supplement traditional experimental research. Many different types of models using various mathematical formalisms can be created to represent any given biological system. Here we review a class of modeling techniques based on particle-based stochastic approaches. In these models, every reacting molecule is represented individually. Reactions between molecules occur in a probabilistic manner. Modeling problems caused by spatial heterogeneity and combinatorial complexity, features common to biochemical and cellular systems, are best addressed using Monte-Carlo single-particle methods. Several software tools implementing single-particle based modeling techniques are introduced and their various advantages and pitfalls discussed.
منابع مشابه
Particle-based stochastic simulations
Most of the modelling approaches used in Computational Systems Biology are population-based, discarding reactant individuality. While those methods have been, and still are, tremendously useful, the complexity of cellular reactions calls for another type of modelling approach, based on particle-based simulations. The discrete stochastic approaches permit to track the state and position of each ...
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملApplication of Stochastic Programming to Determine Operating Reserves with Considering Wind and Load Uncertainties
Wind power generation is variable and uncertain. In the power systems with high penetration of wind power, determination of equivalent operating reserve is the main concern of systems operator. In this paper, a model is proposed to determine operating reserves in simultaneous market clearing of energy and reserve by stochastic programming based on scenarios generated via Monte Carlo simulation ...
متن کاملRELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...
متن کاملLoss of Load Expectation Assessment in Deregulated Power Systems Using Monte Carlo Simulation and Intelligent Systems
Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In this paper, generation reliability is considered, and a method for its assessment using intelligent systems is proposed. Also, because of power market and generators’ forced outages stochastic behavior, Monte Carlo Simulation is used for reliability evaluation. Generation r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006